Integral and Asymptotic Properties of Solitary Waves in Deep Water
نویسنده
چکیده
We consider twoand three-dimensional gravity and gravity-capillary solitary water waves in infinite depth. Assuming algebraic decay rates for the free surface and velocity potential, we show that the velocity potential necessarily behaves like a dipole at infinity and obtain a related asymptotic formula for the free surface. We then prove an identity relating the “dipole moment” to the kinetic energy. This implies that the leading-order terms in the asymptotics are nonvanishing and in particular that the angular momentum is infinite. Lastly we prove a related integral identity which rules out waves of pure elevation or pure depression.
منابع مشابه
Symmetry of Solitary Water Waves with Vorticity
Symmetry and monotonicity properties of solitary water-waves of positive elevation with supercritical values of parameter are established for an arbitrary vorticity. The proof uses the detailed knowledge of asymptotic decay of supercritical solitary waves at infinity and the method of moving planes.
متن کاملSolitary Wave solutions of the BK equation and ALWW system by using the first integral method
Solitary wave solutions to the Broer-Kaup equations and approximate long water wave equations are considered challenging by using the rst integral method.The exact solutions obtained during the present investigation are new. This method can be applied to nonintegrable equations as well as to integrable ones.
متن کاملAsymptotic stability of solitary waves in the Benney-Luke model of water waves
We study asymptotic stability of solitary wave solutions in the one-dimensional Benney-Luke equation, a formally valid approximation for describing two-way water wave propagation. For this equation, as for the full water wave problem, the classic variational method for proving orbital stability of solitary waves fails dramatically due to the fact that the second variation of the energy-momentum...
متن کاملDynamics of Three-Dimensional Gravity-Capillary Solitary Waves in Deep Water
A model equation for gravity-capillary waves in deep water is proposed. This model is a quadratic approximation of the deep water potential flow equations and has wavepacket-type solitary wave solutions. The model equation supports line solitary waves which are spatially localized in the direction of propagation and constant in the transverse direction, and lump solitary waves which are spatial...
متن کاملTransversally periodic solitary gravity-capillary waves.
When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity-capillary solitary waves are foun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016